Hydrodynamics and transport processes on the historical landscape: geomorphic control of functional complexity and implications for restoration

November 18, 2009

Hydrodynamics and transport processes on the historical landscape: geomorphic control of functional complexity and implications for restoration

November 18, 2009

Hydrodynamics and transport processes on the historical landscape: **geomorphic control of functional complexity** and implications for restoration

November 18, 2009

Hydrodynamics and transport processes on the historical landscape: geomorphic control of functional complexity and implications for restoration

November 18, 2009

Listed species challenges

The POD suggests a stressor train wreck:

- Contaminants
- Toxic algae
- Water project exports
- Invasive plants and animals
- Low primary production estuary
- Landscape-scale habitat loss

Changes we can anticipate (e.g. CASCaDE)

- Levees will fail
- Climate change (flood, drought, runoff timing)
- Water temperature increase
- Land subsidence continues
- Seasonal salinity change (more variable?)
- Quagga and Zebra mussels at least
- Unknown new contaminants and invasives
- New Delta plumbing
- Sea level rise
- Restore tidal connections to diked land

In this workshop, the focus is ecosystem restoration because

CONCEPTUAL MODEL:

- Tidal restoration provides ecosystem function support: food, subsidies, refuge, ontogeny
- It will help conserve listed species

This talk

- 1. Native fishes evolved in response to the historical landscape—structure, process, and function.
- 2. Compare historical and modern Delta: To fish, the delta was both bigger and smaller.
- 3. Historical Delta was spatially gradient rich: the distance to different was small
 - a) Structure and "realized" function
 - b) transport timescales
 - c) temperature as f(structure)
- Understanding the historical "spatial pattern" informs restoration strategies

2. To a mobile organism, the historical Delta was much bigger, *and*, the historical Delta was much smaller

Historically, the tidal Delta scaled differently:

bigger and smaller

Bixterine f tidal briftlienctional pidnetrouted be deepermaller into the delta

"A view of delta in natural wetland state covered with tules unsuitable for farming."

From: "DOWN RIVER
Sacramento to the Golden Gate
A Pictorial Record:

1840-1940"

(No date on the photo)

Modern Delta: Far less energy dissipation. It's more like a canal system.

THE STATE OF BAY-DELTA SCIENCE 2008

Historically, the tidal Delta scaled differently:

bigger and smaller

2. Historical Delta was bigger and smaller **Jones Tract** - post breach with Atwater channels - with some easy additions **Evidence of** freshwater floodplain here

(NAIP-2005)

Historical tidal channels were narrow and long, while modern delta is wide and short (A to B)

- Modern levees set back
- Meanders cut off

Modern Delta is a straight shot for fish

THE STATE OF BAY-DELTA SCIENCE 2008

Historical
Delta was
narrower
and longer

THE STATE OF BAY-DELTA SCIENCE 2008

Historical Delta is bigger and smaller

Historical Delta "bigger"

- Long sinuous channels
- Waaaay more "edge"
- Long geographical distances
 A to B

Historical Delta "smaller"

- **↓** geographical tidal extent
- Narrower channel width
- Smaller tidal excursion/range
- River influence penetrated

Modern Delta is bigger and smaller

Modern Delta "bigger"

- † geographical tidal extent
- **†** bi-directional tidal area
- Longer tidal excursion
- Bigger tidal range
- Wider channels (canals)
- Long distance to different scalar concentration

Modern Delta "smaller"

- Levees "shortened" reach distances A to B
- Loops and channel cuts short circuit transit A to B
- Far less channel/slough edge
- Short fish transit time

3. Delta was spatially gradient rich: the distance to different was small.

Examples:

- a) Structure and "realized" function
- b) Transport timescales
- c) Temperature as f(structure)

3a. Structure and (realized) function

• Simenstad et al. 2000:

Realized function = capacity

Survival

Growth

Reproduction

phyto production

insect production

zoop production

temperature refuge

cover options

access

edge as ecotone

edge: patch area

"hot spots" (Kneib '97)

patch size/shape

corridors

за. Structure and (realized) function

за. Structure and (realized) function

за. Structure and (realized) function

Historical Delta:

- Strong longitudinal physical/scalar gradients
- Connectivity is f(tide strength)
- Large terrestrial connectivity and exchange
- Distance to different is small

- Tidal excursion > than characteristic reach length
- Effectively shorter channel reaches
- Weak longitudinal physical/scalar gradients
- Connectivity not f(tide strength)
- No terrestrial connectivity/exchange

Deep Slough (~heterotrophic habitat)

Implication: "Outcomes of building new habitats will depend upon the landscape configuration of those habitats and, in particular, how rapidly they exchange water, solutes, and biota with connected habitats." (J.Cloern)

Structure influences function Geomorphology "filters" estuarine drivers

Geomorphology (Like a Filter)

Structure influences function Geomorphology "filters" estuarine drivers

Geomorphology (Like a Filter) Linkages Drivers Outcomes (processes) (forcing) (Chemical/Biological **Habitat Characteristics**) Advection Meteorology **Gradients** of Dispersion Residence time Tides Gravitational Salinity Circulation <u>Temperature</u> River inputs Sediment Sedimentation Biota Toxics etc.

First Mallard Branch

Structure influences function Geomorphology "filters" estuarine drivers

Geomorphology (Like a Filter) Drivers Linkages Outcomes (forcing) (processes) (Chemical/Biological **Habitat Characteristics**) Advection Meteorology **Gradients** of Dispersion Residence time Tides Gravitational Salinity Circulation <u>Temperature</u> • River inputs Sediment Sedimentation Biota Toxics etc.

Sheldrake Slough

Tidal Flow

Tidal Flow

April

| May

13 20 27 3 10 17 24 1

| June

15 22 29

August

July

- Historical landscape to Modern restoration it's a big leap...
- Trajectories of change will be decadal.
- We'll need designs that do it all:
 - Restore dendritic tidal marsh hydrogeomorphology.
 - Keep pace with sea level rise.
 - Support listed species needs now.
 - Don't make it worse!
 - Are adaptable

The initial condition is elevation challenged

The levee breach "knob": where, how many, how wide, how deep

> Reduce the distance to different (e.g. Chipps Is.)

> Use historical structure as energy/material conduits.

Provide for variable habitat connectivity

Deep Slough (~heterotrophic habitat)

➤ Use natural processes to advantage:

"Work with nature, let nature do the work"

Key ideas

- Historical Delta was narrower, longer, way more ecotone.
- Structural relationships produced a gradient rich system.
- Native species need multiple forage, refuge, ontogeny options.
- Restored marshes should be productive and accessible at multiple scales.
- Learn how to use the levee breach "knob" to restore diverse structures, processes, and disturbances.
- We know enough. Proceed boldly, watch closely, adapt if needed, teach the kids what we learn.

Thank you

 Stuart Seigel, Jon Burau, Cliff Dahm, Leo Winternitz, Dave Harlow, Curt Schmutte, Carl Wilcox, Matt Nobriga, Paul Massera, Terri Fong

Why are we here (do I think)?

Species conservation affects water supply reliability

Water supply reliability affects species conservation

Therefore, set co-equal goals:

Increase water supply reliability and conserve listed species (with ecosystem restoration)

Structure controls functional variability: Structural disturbance thresholds

End of June 2004

Structure controls functional variability: Distance to different temperature is small

End of June 2004